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S his paperspnad acribeipDRPACK, a software package for the Or-
thogonal Dist sB pjm-( R) roblem. This software implements
the algorithm e -i 4-- gD e6, for finding the set of parameters that
minimize the sum of the squared orthogonal distances from a set of ob-
servations to a curve determined by the parameters. It can also be used
to solve the ordinary nonlinear least squares problem. The ODR proce-
dure has application to curve fitting, and to the errors in variables problem
in statistics. The algorithm implemented is an efficient and stable trust-
region (Levenberg-Marquardt) procedure that exploits the structure of the
problem so that the computational cost per iteration is equal to that for
the same type of algorithm applied to the ordinary nonlinear least squares
problem. The package allows a general weighting scheme, provides for fi-
nite difference derivatives, and contains extensive error chocking and report.
generating facilities.

'*keywords***
orthogonal distance r ion

nonlinear least squares
errors in variables 
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1 Introduction

In [BosBSSS the autho provide a efficient and stable algorithm for the
orthogonal distance egre ion (ODR) problem. This problem is dend as
follows. Let (z,1), i = 1...,, be a given set of data whoe R't

and i E I it. Suppose tat the values of S are a function of zi ad a set
of unknown parameters P RP, but that both the I& ad the x contain
actual, but unknown, erors j E It' and 6 E Rm, respectively. Then the
observed value of yj satisfes

x, = f(x, + V,;r') - C: n f ,.,

for some actual but again unknown value . (Note that we have chosen
the sig of ed to be negative for conve nice.) The orthogonal dmeenc
reraeiemo problem is to approtdmate r by fLading the 0 for which the
sum of the squar of the n orthogonal distances from the curve f(s; 0) to
the n data points in mnimiaed. This in accomplished by the mtnlmstl
problem

+

subject to the constraints
a = ffi ( +C 0;) - e, i"= n,..!

Since these coasrainte are linear in e, we can eliminate them mnd the t,,
thweby obtaining

min f, [(z(, + )-,) + 7] )'

We obtain the final farm of the problem to be solved by allowing a
son" weighting schm. Let wv, i = 1,..., a, be a met of mo-negative
numbers and let D E R ', i = 1,.. ,n, be positive diagonal matrices.
Then (1) is smeralised to the woked wthApnel owe rersem prob-

a&+ t ,2), + (2)
dot
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This weighting scheme enables us to apply our procedure to problems where
e and 6 have different variances, and to situations where various observ -
tins should be weighted differently.

The algorthm deeoe in jnogBS85] is trut-regio, Levnbeg-
Marquardt method that exploits the structure of the problem to obtain
procedure that is both stable and efficient. In the cn of ordinary least
squares (OLS), i.e., where all of the 6 are assumed to be sero, the trust
rom, Levenberg-Marquardt method requires O(n9) operations per it-
eration. (See, e.g., [DenS3S and [MorT71.) The order of operations per
iteration, and the constant for the highest order term, is the same for the
algorithm developed in ,,ogBSSJas for OLS. Note that a straight forward
use of an OLS algorithm on (2) would require o(n(a + p)2) operatio.n per
iteration (see [BouBS8SI) which is clearly prohibitive for large values of n.

ODRPACK implements the algorithm presented in (BogBSSJ. In 12

we describe ODRPACK in detail and in 1 3 we discuss the Itallation of
the packag. Appendes A and B give a sample program and its output,
respectively. The complete user's reference guide and installation manual
ae distributed with the package.

2 Package Overview

2.1 Highlights

ODRPACK is a portae collection of ANSI '77 Fortran subprgrM for
fitting a model to data. It is dsigned primarily for instaces when the in-
dependent as well as the dependent variables have significant errors. ODi-
PACK embodies a highly ecient al rithm for solving the weighted or-
thogonal distance rqress problem. In addition, it can be used to solve
the ordinary lest *am problem where all ofthe erron are attributed to
the observations of the dependent variable, V6.

ODRPACK is designed to accommodate many levels of user sophistic.-
twn and problem difficulty.

* It is esy to use, providing two levels of user-control of the corn-
putatos, edsive error handling facilities, compsbesive printed
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reports, complete online documentation and no size restrictions other
than effective machine sise.

" The necemsary derivatives (Jacobian matrices) are approximated nu-
merically if they are not supplied by the user. In addition, the cor-
rectness of user-supplied derivatives can be verified by the derivative
checking procedure provided.

" Both weighted and unweighted analysis can be performed.

* Subsets of the unknowns can be treated as constants with their values
held fixed at their input values, allowing the user to examine models
with fewer parameters without rewriting the model subprogram.

" ODRPACK has a default scaling algorithm that attempts to auto-
matically accommodate poorly scaled problems in which the model
parameters and/or unknown errors in the independent variables vary
widely in magnitude. Alternatively, the user can supply appropriate
scaling values.

" ODRPACK is portable and is easily used with other Fortran subpro-
gram libraries. (See 5 3.3.)

The following sections discuss the use of ODRPACK and provide a brief
description of ODRPACK's main features.

2.2 Implementation

2.2.1 Algorithm

A full discussion of the ODRPACK algorithm is found in jBogBSA5j. Briefly,
ODRPACK implements a trust region Levenberg-Marquardt method, using
scaling to accommodate problems in which estimated values hve widely
varying magnitudes. The Jacobian matrices, i.e., the matrices of first par-
tial derivatives of f(z; 0) with respect to ( and z, are computed at every
iteration either by finite differences or by a user-supplied subprogram (see
j 2.2.3). The iterations are stopped when any one of three stopping criteria
are met. Two of these indicate the iterations have converged to a solution.

3
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These are sum-of- quare convergence, which indicates that the change in
the sum of the squared weighted observational errors is sufficiently small,
and pearmeter convergence, which indicates the change in the parameters
is sufficiently small. The third stopping criteria is a limit on the number of
iterations.

2.2.2 Starting Values

The user must supply starting values for the unknowns being estimated, i.e.,
for 0 and 6. Users familiar with the ordinary nonlinear least squares prob-
lem are generally aware of the importance of obtaining good starting values
for the estimated function parameters. It is equally important here. Good
initial approximations can significantly decrease the number of iterations
required to find a solution; a poor initial approximation may even prevent
a solution from being found at all. Reasonable initial approximations are
often available from previous analysis or experiments. When good starting
values are not readily available, the user may have to do some preliminary
analysis to obtain them [Him70.

Users who do not provide scale information are strongly encouraged not
to use sero as an initial approximation for any of the function parameters,
Oi, k = 1,... ,p, since a sero value can result in incorrect scaling (see
1 2.2.4). Setting the initial approximation to the largest magnitude which,
for the user's problem, is effectively zero, rather than the actual value
sero, will help to eliminate scaling problems and possibly produce faster
convergence. For example, if #I represents change in a cost measured in
millions of dollars, then the value 10 might be considered "effectively sero"
and an initial value of 1 = 10 is preferable to O = 0.

When using orthogonal distance regression it is also important to have
good starting values for the estimated errors, 6., i = 1,...,n. The ODR-
PACK default is to initialize 4 to zero, which is the most obvious initial
value. (Note that zero starting values for 6, do not cause scaling problems
similar to those discussed above for P.) Initializing 6, to zero, however, is
equivalent to initially assigning all of the errors to the dependent variable
as is done for ordinary least squares. While this is quite adequate in many
cases, in others it is not. A plot of the observed data and of the curve
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described by the model function for the initial parameters may indicate
whether or not zero starting values for 6 are reasonable and may make it
possible to visually determine better starting values for some of the 6 . For
example, if such a plot shows that the vertical distance from a data point
(zi, y,) to the curve is far larger than the orthogonal distance, then 6, should I
probably not be initialized to zero. This may occur near an asymptote or
near a local minimum or maximum. In such cases, it is often appropriate
to initialize 6. to the horizontal distance from the data point to the curve.

2.2.3 Derivative Handling

As was noted in § 2.2.1 the Jacobian matrices, i.e., the matrices of first
partial derivatives of f (z; 0) with respect to each 0 and each component
of z,, are required at every iteration. The user may provide the necessary
derivatives, or they can be computed by ODRPACK using finite differences.
Finite difference derivatives generally cause very little change in the results
from those obtained using analytic derivatives, provided sufficient precision
is used (typically double precision on a 32-bit machine).

Because coding errors are a common problem with user-supplied deriva-
tives, ODRPACK has an option to check the validity of the user-supplied
derivative code by comparing its results to finite difference values for thee
derivative. The derivative checking procedure examines only one row of the
Jacobian matrices, and is therefore quite efficient. Checking only one row
is reasonable for regression models since the same code is frequently used
to compute the model function and derivatives for each row, as in the case
of the example shown in Appendix A.

When the value of the user-supplied derivative disagrees with the cor-
responding finite difference value, the checking procedure attempts to de-
termine whether the disagreement is due to an error in the user's code or
is due to the inaccuracy of the finite difference approximation. The check-
ing procedure automatically generates an error report when one or more
of the derivatives are found to be either incorrect or questionable. This
report identifies which derivatives appear correct, which appear incorrect,
and which appear questionable and for what reason.

5
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2.2.4 Scaling

Poorly scaled problems, i.e., problems in which the unknowns, P and 6, vary
over several orders of magnitude, can cause difficulty for least squares proce-
dures. ODIRPACK's scaling algorithm attempts to automatically overcome
these difficulties, although it is preferable for the user to choose the units
of the variable space so that each of the parameters P will have roughly
the same magnitude (DenSS31. When the variables have roughly the same
magnitude, the ODRPACK scaling algorithm will select scale values which
are equal, and the resulting computations will be the same (except for the
effect of finite precision arithmetic) as an unscaled analysis, i.e., an analysis
in which all of the scale values are set to one. If the variables do not have
roughly the same magnitude, the ODRPACK scaling algorithm will select
varying scale values. This will not change the optimal solution but may
affect the number of iterations required to find the solution, and, in some
cases, whether the algorithm is or is not successful.

Users may also select their own scale values as discussed in the ODR-
PACK reference guide.

2.2.5 Default Values and Structured Arguments

ODRPACK uses default values and structured arguments to simplify the
user interface. The availability of default values in ODRPACK means that
the user does not have to be concerned with determining values for many of
the ODRPACK arguments unless the problem being solved requires the use
of non-default values. Structured arguments, described below, can reduce
the amount of storage space required for some arguments and the work
required by the user to initialize those arguments.

Default Values. Default values have been specified for ODRPACK sub-
program arguments wherever feasible. These default values are invoked by
setting the corresponding argument to any negative value. Arrays with
default values are invoked by setting the first element of the array to a
negative value, in which case only the first value of the array will ever be S.
used. This allows a scalar to be used to invoke the default values of arrays,
thus saving space and eliminating the need to declare such arrays.

6
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Users are encouraged to invoke the default values of arguments wherever
possible. These values have been found to be reasonable for a wide class of
problems. Their use will greatly simplify the initial use of ODRPACK for
a given problem. Fine tuning of these arguments can then be done later if
necessary.

Structured Arguments. Certain ODRPACK arguments specify attrib-
utes of the individual components of X and A, where X is the n x m array
with i-th row zi and A is the corresponding n x m array with i-th row 6,.
These attribute arrays are frequently either constant for all components or
are constant within each column and vary only among the columns. The
structured argument facility allows a scalar to specify an attribute of an
entire column or of the whole array.

For example, one such attribute array which might display this structure
is the matrix of 6 weights, RHO, where RHO is an n x m array with i-th
row the diagonal elements of D (cf. (2)). Suppose each row of X indicates
an hourly temperature reading and each column a different day on which
the temperature readings were taken. Then the user would probably want
to weight each component of A equally, and thus RHO would be constant
throughout. If one column of the independent variable contained hourly*
temperature readings and the other hourly humidity readings, then the
user might want to weight each component in the first column of A the
same, and to weight each component in the second column the same, but
not necessarily want to weight the two columns equally. In this case, the
components of RHO would be constant within each column and would vary
only among the columns. Of course, in other cases, the user might want
to weight each component of A differently, and each component of RHO
would be different.

ODRPACK structured arguments exploit this structure. If each of the
n x m elements of an attribute array is the same, then a single value can
be used to specify all n x m; elements. If the values of such an array only
vary among the columns, then each column of the array can be specified
by a single value. Thus, it is only necessary to supply all n x m elements
of the structured argument array when the elements of one or more of the
columns must be individually specified.

7
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2.2.6 Calling Sequences

As we noted in § 2.1, ODRPACK has two levels of user-control of the com-
putations. These levels are provided by user-callable subprograms SODR
and SODRC in single precision, and DODR and DODRC in double pre-

cision. SODR and DODR have shorter call statements than SODRC and
DODRC because they preset many variables to their default values in order

to reduce user input. (See § 2.2.5.) We believe that SODR and DODR are
adequate for most problems. SODRC and DODRC, with their expanded
call statements, provide the user with maximum flexibility in finding the
weighted orthogonal distance solution.

2.2.7 Automatic Output

ODRPACK automatically generates computation reports, thus saving the
user from the tedious chore of formatting the results for output. The
ODRPACK computation reports are divided into three parts: an initial
summary, iteration summaries and a final summary. Each part can be
generated in either a long or short form, and the frequency of the itera-
tion summaries can be specified. By default, the computation reports in-
clude a "long initial sumnmary, no iteration summaries and a "short" final
summary, as shown in Appendix B. ODRPACK user-callable subprograms
SODR and DODR automatically generate the default report; subprograms
SODRC and DODRC allow the user to control the computation reports.

2.3 Example Program

Appendix A shows an example of a user-supplied driver for invoking ODR-
PACK. This sample program uses the ODRPACK double precision sub-
program DODR to solve exercise I on pages 521 - 522 of jDraS81j. (An
example using ODRPACK single precision subprogram SODR could easily
be generated from the one shown in Appendix A by substituting SODR for
DODR and changing the DOUBLE PRECISION declaration statement to
REAL.) The model for this example is

-j exp {1 (zi. + 6,j) exp 1- 6,, -

8
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The report generated by ODRPACK for this example is shown in Appendix j
B. i

3 Installing ODRPACK

3.1 Supplied Software

3.1.1 ODRPACK Code

ODRPACK software is available in both single and double precision ver-
sions. These are distinguished by the first letter of the subprogram name:
D for double precision, S for single precision. The code for each version is
separated into three sections to facilitate installation.

The first section includes all subprograms written especially for ODR-
PACK. The two user-callable ODRPACK subprograms of each version are
listed first, followed by the ODRPACK exercise subprogram. The remain-
ing subprograms are then listed in alphabetical order. The code in this
section should not require any modification, unless the installer wishes to
customize the user-callable subprograms as discussed in § 3.2.

The second section of code includes the subprograms used by ODR-
PACK from the public domain packages LINPACK IDonMBS791 and BLAS
(LawHKK791, also listed in alphabetical order. The installer can use local
versions of these packages if available. This would be particularly beneficial
if the installer's machine has specially optimized versions of LINPACK or
BLAS.

The third section includes the only machine dependent subprogram in
ODRPACK. This subprogram supplies the machine dependent constants
used by ODRPACK. It already includes comment statements listing the
necessary constants for a number of common machines. If the constants
for the target machine are included in this subprogram, then the installer
need only "uncomment" the appropriate DATA statements. Note that this
subprogram will return an undefined value until it is updated; the installer
must update it before compiling and running ODRPACK.

9
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3.1.2 Test Drivers and Data

The ODRPACK supplied software includes drivers and data sets for running
ODRPACK in both single and double precision. There are three drivers
for each version of the code. Two of these drivers are simple programs
that users can modify to form their own ODRPACK drivers. The third is
a demonstration program which exercises ODRPACK's main features and
can be used to verify that the installation was completed successfully.

The demonstration program calls ODRPACK several times, with each
call testing one or more features of the package. The results of each call are
automatically compared to the results obtained by the authors using the
double precision version of ODRPACK run on a CYBER 855 under NOS
2.4.2 (120 bits per double precision value). The success, or failure, of each
test is noted individually in the output generated by this program, and is
summarized for all of the data sets. By running this demonstration, the
installer can easily be assured that the package is performing as it should.

3.2 Customizing ODRPACK

ODRPACK is designed to easily accommodate a wide variety of problems
without any modification to the supplied code. However, installers might
want to customize the user interface, i.e., the user-callable subprograms, or
to customize the ODRPACK generated reports for specific tasks.

Customizing ODRPACK is simplified by the extensive comments con-
tained within each subprogram, and the consistent use of variable names
between subprograms. The SLATEC Source File Format IFonJS82 has
been followed, and each subprogram provides a standardized prologue de-
scribing the purpose of the subprogram and what other subprograms are
called, an alphabetical list of all variables referenced by the subprogram
and how they are used, as well as comments explaining the major sections
of the code.

In addition, ODRPACK's automatically generated reports are produced
by separate subprograms. Because the report generators are isolated in this
manner, it is relatively easy to produce customized reports if required.

10I0



3.3 Portability

ODRPACK code cosfoms to the ANSI X39-1978 FORTRAN standard
and has been succmsfully installed on a Cyber 5, Cyber 206, IBM PC/AT,
Coscurnst 3230 sad Vax II/780. We believe it will be possible to install
ODILPACK an any systm with au ANSI Fortran '77 compiler and adequate

Umemery
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A Sample program

PRO"RA SAMPLE
C
C SET PARAMETES FOR MAIMU PROBLEM SIZE HANDLED BY TIMIS DRIVER

C VWE MAIN 1S THM MAZ"U NUMBER OF OBSERVATIO0NS ALLOWED
C MAIN IS THE MAX IMN NUMBER OF COLUMNS IN THE

C IUD&PENDET VARIABLE ALLOWE. AND
C MAIN? I5 THE MAIME NUMBER OF FUNCTION PAJAMETERS

C ALLOWED
C

INTEGER MAIN. MAIM *MAIN?

PARAMETER (MAID-Il .MAXN-5 .IAXNP=S)

C ST PARAMETERS TO SPECIFY DIMENSIONS OF ARRAYS USED BY DOOR11
C

INTEGER LOX* INO * LUCRMLI WOR
PARAJETE

" (LDI-MAI.
" LDRNgO1.
" LVORE a 9 * MAIN *NeAXNeMAXM * 2AXN.MAXNP s'MAINP.
" LIWORK w 2.MAXUP # MAIN * 10)

C DECLARE USER-SUPPLIEID SUROUINES AND
C ALL OTHER NECESSARY VARIABLES AND ARRAYS

cU

EXTERAL
*FU.JAC

INTEGER
* 1N.SIP.
* JOB.
* IVORECLIVOR).

DOUBLE PRCISICI
" I (LDI.MRAW).
" Y(LDI).

* BETA(MAXNP).
* NO(LDRNWO.MAIN).
* UCRX(LVORK)

12



OPEI(UNIT=5 FILE 'DATA1')
OPEN(UNIT6 .FILE= 'REPORT')

C
C READ NUMBER OF OBSERVATIONS
C NUMBER OF COLUMNS OF DATA IN THE INDEPENDENT VARIABLE
C NUMBER OF PARAMETERS
C OBSERVED VALUES OF INDEPENDENT AND DEPENDENT VARIABLES
C STARTING VALUES OF FUNCTION PARAMETERS
C

READ (6.) N..NP
READ (5.) ((X(I.J).I-t.N).J.N)

READ (5.) (Y(I).I-I.I)
READ (5.) (BETA(1).I=I.NP)

C
C SPECIFY DELTA WEIGHTS

C
31O(1.1) a 3.ODO

HO(1.2) a 5.ODO
C
C SIT JOB TO DEFAULT SETTING. INDICATING
C - SOLUTION TO BE FOUND BY ODR
C - DERIVATIVES TO BE COMPUTED BY FINITE DIFFERENCES
C - DELTA'S TO BE INITIALIZED TO ZERO
C

JOB -1
C
C CONPUTE OD SOLUTION USING FINITE-DIFFERENCE DERIVATIVES

C
CALL DONR

" (FUN .JAC. "
* I.N.NP.
* X.LDX.

* Y.

* BETA.
* RlO. LORNIO.
* JOB.

=OS. LVOU .IVIR.LIORK,

* INFO)

13
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V.; IF -W p.F -IF -W pVw r -VI sri Mrrr. h-

C
EID
SUBROUTINE FUN(X.NP,MSBETA.XPLUSD.LDXPD.F.IFLAG)

C
C INPUT AIGUMENTS
C (MHICH MUST NOT BE CHANGED BY THIS ROUTINE)
C

INTEGER N.NP.NSLDXPD
DOUBLE PRECISION BETA(NP).IPLUSD(LDXPD.N) I

C
C OUTPUT ARGUMENTS
C

DOUBLE PRECISION F(N
INTEGER IFLAG

C
DO 10 I a 1. N

FMI - EXP(-BETA(l)aIPLUSD(I.1)o
* EIP(-BETA(2)s
* (1.000/XPLUSD(I.2) - .ODO/620.ODO))

10 CONTINUE
C

RETURN 5

END

14b



B Sample output

Report generated by DODR example program from Appendix A, run using
a Cyber 180/856 under NOS 2.4.2.

*e********es****e*************************

O DRPACK VZUSIOU 1.2 Of 12-15-6 (DOULE PRECISION) *

INITIAL SUMIA FOR FIT BY METHOD OF ODR

PIOOLN SIZ:
--- o--------o

NUNDU OF OSSUtVATIONS S
NSUl OF COLUNS OF DATA I0 INDEPEDIT VARIABLE 2 i.

NUNBUR OF FUNCTION PARANIETER 2
IUIBNI OF UNFIXID FUNC ION PARAMETERS 2

INDEPRNDENT VARIABLE AND DELTA WRIGHT SUIKARY: "

COLUIM I COLUMN 2
on31 OBS N OBS 058 I

I - .10000003 .6e0000*02 .600000.03 .640000#03

FIXED - no no no no
INITIAL DELTA - .000000+00 ,0000D+00 .00000'*00 .00000+00

15 ".
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DELTA SCALE - .77400-03 .76740)-03 . 156260-02 .l621D-02
DELTA WKIGHTS - .30000 1 .300000.01 .600000D*1 .( X0000OI0

DEPENDEIIT VARIABLE AMi OBSERVATIONAL EO WEIGHT SISIUARY:

ON Ion I

T - .912001.00 .37OOD.0
o03. ERROR WTS. - . I00000O 1 .100000.01

PUNCT IOU PARAMETER SUMSAR:

INmX - 1 2
INITIAL BETA - .11610000-01 500000000.04

FIXED - sO NO

BETA SCALE - .*6SU OOTD02 .200000000-03

CONTROL VALUES £ND STOPPING CRITERIA:

JOB TAUFAC ISTOL PARTOL NAXIT
-0001 .IOD*01 .00-14 .00-19 10

A. FIT IS NOT A RESTART.
B. DELTAS ARE INITIALIZED TO ZERO.
C. DERIVATIVES ARE COWUTU BY FINITE DIFFERENCES.
D. FIT 1 BY fETNOD OF ORTHOGONAL DISTANCE REGRESSION

16
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INITIAL SUN OF SQUARES:I

SUN OF SQUARED WEIGKTED OBSERVATIONAL, ERROS .67662011D40O

SUN OF SQUARE WEIGHE DELTAS O0l000000OD+0OI
SUN OF SQUARED WEIGHTE MPILONS .676620111D.00

FINAL SWIARY FOIL FIT ST NTNOD OF 001L

STOPPING CONDITION (INFO * 1:

TU NUAT XVI CHANGE IN TIM SUN OF THE SQUARED
WEIGHTE O3SERVATIOUAL MRORS IS LES TRAN SITOL

COND IT ION
NUNIRR OF NUNDR of MBER RamK

ITERATIONS FN EVALS (INVESE) D&FICIESCY
0 34 .ISSS-0 0

FINAL SUN Of SQUARES:

SUN OF SQUARED WEIGHTD OBSUVATIOKAL ERRORS .7662323D-03 4
SUN OF SQUARED WEIGHTE DIELTAS .236420W0-07 4
SUN OF SQUARED WEIGHTE IPSILONS . 75S?7NG-03

17



ESTIMATED BETA(I). I 1 .... NP:

INDEX VALUE -------- ------ >

I TO 2 .36879727D-02 .27627327D+06

ESTIMATED EPSILOI(I) AND DELTA(I.,). I - 1 ..... :

I EPSILON(I) DELTA(I.1) DELTA(1.2)

I .16762,14D-02 .14096172D-O0 .4241S796D-06

2 .20434716D-02 .12638222D-06 .202626100-06

3 -. 20690066D-01 -. 71662291D-06 -. 2336f24D-04
4 .24306682D-02 .16047092D-06 .241144S1D-06
6 .72777482D-02 .2839S261D-06 .82079313D-06
6 .40793264D-02 .2416264OD-O6 .4046362D-06
7 .13043071D-O1 .43337344D-06 .14726727D-04 4.

6 -. 66499649D-02 -. 51394600-06 -. 84061063D-06 .

.',
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